Сумма площадей

Формула площади

Сумма площадей

Геометрия 6,7,8,9,10,11 класс, ЕГЭ, ГИА

    Распечатать

Формула площади необходима для определения площадь фигуры, которая является вещественнозначной функцией, определённой на некотором классе фигур евклидовой плоскости и удовлетворяющая 4м условиям:

  1. Положительность — Площадь не может быть меньше нуля;
  2. Нормировка — квадрат со стороной единица имеет площадь 1;
  3. Конгруэнтность — конгруэнтные фигуры имеют равную площадь;
  4. Аддитивность — площадь объединения 2х фигур без общих внутренних точек равна сумме площадей этих фигур.
Формулы площади геометрических фигур.

Геометрическая фигура Формула Чертеж
Параллелограмм.Результат сложения расстояний между серединами противоположных сторон выпуклого четырехугольника будут равна его полупериметру.S = ah
Сектор круга.Площадь сектора круга равна произведению его дуги на половину радиуса.
Сегмент круга.Чтобы получить площадь сегмента ASB, достаточно из площади сектора AOB вычесть площадь треугольника AOB.S = 1/2 R( s – AС)
Эллипс.Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.S = πab
Эллипс.Еще один вариант как вычислить площадь эллипса – через два его радиуса.S = πr1r2
Треугольник. Через основание и высоту.Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.S = 1/2 ah
Треугольник. Через две стороны и угол.Площадь треугольника равна половине произведения двух его сторон, умноженного на синус угла между ними.S = 1/2 ab sinα
Треугольник. Формула Герона.Площадь треугольника можно определить при помощи формулы Герона.
Треугольник. Через радиус вписанной окружности.Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
Треугольник. Через радиус описанной окружности.Площадь треугольника можно определить по радиусу описанной окружности.
Треугольник. Площадь прямоугольного треугольника.S = 1/2
Треугольник. Площадь прямоугольного треугольника через вписанную окружность.S = de
Треугольник. Формула Герона для прямоугольного треугольника.S = (p – a)(p – b)p = (a + b + c)/2
Треугольник.Площадь равнобедренного треугольника.S = 1/2 a2 sinα
Трапеция.Площадь трапеции равна произведению полусуммы ее оснований на высоту.S = 1/2 (a + b) h
Ромб. По длине стороны и высоте.Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.S = ah
Ромб. По длине стороны и углу.Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.S = a2 sinα
Ромб.Формула площади ромба по длинам его диагоналей.
Круг.Формула площади круга через его радиус и диаметр.
Квадрат. Через его сторону.Площадь квадрата равна квадрату длины его стороны.S = a2
Квадрат. Через его диагонали.Площадь квадрата равна половине квадрата длины его диагонали.S = 1/2 d2
Правильный многоугольник.Для определения площади правильного многоугольника необходимо разбить его на равные треугольники, которые бы имели общую вершину в центре вписанной окружности.S= r·p = 1/2 r·n·a
Сфера.Площадь поверхности сферы равна учетверенной площади большого круга.S=4 π R2
Куб.Площадь поверхности куба равна сумме площадей шести его граней.S=6 H2
Конус. Боковая площадь поверхности круглого конуса равна произведению половины окружности основания (C) на образующую (l).S = 1/2 C * l = π r l
Усеченный конус.Боковая площадь поверхности усеченного конуса.S=π (r1+ r2) l
Цилиндр. Площадь боковой поверхности круглого цилиндра.S=2 π rh
Сегмент шара.Площадь поверхности шарового сегмента равняется произведению его высоты на окружность большого круга шара.S= 2π R h
Поверхность шарового слоя.Кривая поверхность шарового слоя равна произведению его высоты на окружность большого круга шара.S= 2π R h

Дополнительные материалы по теме: Формула площади

Источник: https://www.calc.ru/Formula-Ploshchadi.html

Как посчитать площадь – какие способы пригодятся на стройке

Сумма площадей

С одной стороны нет ничего проще, как посчитать площадь любой поверхности (вертикальной, горизонтальной). Однако и здесь можно найти несколько нюансов и некоторые из них могут привести к трудностям.

Разберём, что особенного может быть в вычислениях площади и рассмотрим несколько примеров. Прочтя этот материал, вы уже не будете плавать в этом вопросе. Заодно вспомните школьную программу с её формулами.

Казалось бы, что может быть проще Источник ar.aviarydecor.com

Почему не все так просто

Так вопрос, как рассчитать площадь любой поверхности может показаться смешным, ведь все мы учились в школе. Но не будем столь категоричными. Во-первых, со школьной скамьи многие из нас сошли со школьной скамьи очень давно. Во-вторых, не каждый раз в повседневной жизни приходится сталкиваться с необходимостью геометрических расчётов. И кое-что уже позабыто.

Ну и в третьих далеко не всегда поверхность имеет правильную форму. Тогда приходится изворачиваться, применяя более сложные приёмы расчёта. Это с квадратами и прямоугольниками все просто, но как быть в случае трапеции, треугольника и прочих сложных геометрических фигур?

Необходимость расчётов

Кто-то может задать и такой вопрос: «Собственно, а для чего потребуется рассчитать площадь?» Для этого есть определённые причины:

  • Полученные данные позволят подобрать нужное количество строительных материалов, дабы не переплачивать.
  • Рассчитав площадь, можно определить и объем помещения. А это уже главная характеристика, без которой не обойтись в случае выбора климатического оборудования, приборов отопления или системы вентиляции.
  • Некоторые коммунальные услуги как раз учитывают площадь помещения.
  • Выбор осветительных приборов, а точнее их количество, также зависит от этого рассчитываемого параметра.

Например, количество закупаемого ламината можно рассчитать, только зная площадь комнаты Источник bazazakonov.ru

Самое время вспомнить школьную математику – чтобы рассчитать площадь, необходимы три параметра:

  • Длина – обычно она бывает 4 либо 4,5 метра.
  • Ширина – стандартное значение для большинства домов это 3 или 3,5 метра.
  • Высота – в новостройках она обычно равна 2,5 метрам. А вот в постройках сталинской эпохи может составлять до 3 метров.

В решении задачи, как рассчитать площадь, не обойтись и без соответствующих инструментов:

  • рулетки;
  • строительного угольника;
  • карандаша;
  • калькулятора;
  • строительного уровня.

Если планируются много писать, то вместо листка бумаги лучше взять блокнот либо тетрадь. Листики имеют свойство теряться, причём, когда нужно не всегда найдёшь их потом. Рулетка обязательно должна быть с фиксатором, иначе возникнуть сложности и процедура расчётов превратится в настоящее мучение.

Алгоритм проведения расчётов

Если все подготовлено, то можно переходить к самим расчётам. Если нужно вычислить площадь поверхности правильной формы, то здесь нет ничего сложного – эти формулы уж точно никто не позабудет.

Без рулетки никак Источник sv.decorexpro.com
Каталог проектов прямоугольных домов

Другое дело, когда стена, пол, потолок имеют сложные очертания. Здесь уже придётся сочетать различные приёмы. То есть поделить комнату на несколько блоков, после чего рассчитать площадь каждого из них. А далее от общей площади вычесть или прибавить их.

Вовсе не обязательно мерить длину стен строго вдоль плинтусов – замер можно проводить в любом удобном месте, если, скажем, мешает мебель. То есть выше, ниже, в середине, главное соблюсти при этом строгую параллель полу и потолку. Никаких диагоналей или наклонов! В противном случае расчёты будут неверными.

При возникновении трудностей можно всегда заручиться поддержкой кого-то из домашних.

Правильная геометрия

Каких-либо сложностей касательно того, как вычислить площадь, здесь нет. В случае простого прямоугольника достаточно замерить всего две стороны и высоту, ведь у такой фигуры противоположные стороны равны. Чтобы убедиться, что комната имеет правильные очертания, достаточно приложить к углам строительный угольник, правда не всегда удаётся получить чёткую картину.

Формула для расчёта прямоугольника известна каждому:

S=a⋅b, где:

  • S – рассчитываемая площадь;
  • a – длина;
  • b – ширина.

Кажется, что формулу площади прямоугольника забыть невозможно, хотя у некоторых получается и это Источник wezanu.ritobypus.ru.net

Такая формула актуальна для стен, потолка, пола, дверей, окон и прочих прямоугольных поверхностей. В случае запланированного ремонта важно получить чистые значения. Для этого следует от площади стены вычесть площадь дверей, окон. Общую площадь всей комнаты можно рассчитать по такой формуле – h(a⋅2+b⋅2). Где h – высота помещения.

С квадратом все ещё проще – достаточно замерить одну сторону и возвести её значение в квадрат.

Помещения с неправильными очертаниями

Но как посчитать площадь комнаты, если она имеет неправильную форму поверхностей? Здесь есть некоторые нюансы:

  • Стены. В мансардной комнате стена может иметь форму трапеции или треугольника.
  • Потолок. В тех же мансардных помещениях данная плоскость может быть под определённым углом. Также есть варианты с ломаной поверхностью, когда несколько плоскостей пересекаются межу собой.

Но ничего страшного здесь нет и не нужно углубляться в тригонометрию. Достаточно любую сложную поверхность стен или потолка визуально разделить на несколько простых плоскостей. После этого остаётся рассчитать площадь каждой фигуры и сложить их вместе.

Случай чуть-чуть посложнее – но не намного Источник wezanu.ritobypus.ru.net

Для облегчения ниже приведём несколько формул площадей, которые могут пригодиться:

Круг:

  • S=π⋅R² – нужен только радиус.
  • Сектор круга определятся так – S=0,5pr.

Параллелограмм:

  • S=a⋅b⋅sin(α) – по двум сторонам и углу между ними.
  • S=a⋅h – по высоте и основанию.

Треугольник:

  • S=0,5⋅b⋅h – по основанию и высоте.
  • S=0,5⋅ab⋅sin(α) – по сторонам и углу.
  • S=√(p·(p-a)·(p-b)·(p-c)) – формула Герона по трем сторонам.

Трапеция:

  • S=0,5⋅h⋅(a+b) – по высоте и основанию.
  • S=m⋅h – по средней линии и высоте.

Эллипс:

  • S = π⋅R1⋅R2 – по двум радиусам R1 и R2
  • S=π⋅a⋅b – через полуоси a и b.

Обозначения: π – 3,14159 (всем известное число пи), R – радиус, a, b, c – стороны фигуры, p – полупериметр (для формулы Герона), h – высота, m – средняя линия.

Простое решение вопроса

Как высчитать квадратный метр стен, потолка или пола, если нет свободного времени, в особенности, когда имеешь дело со сложными фигурами, но есть интернет? В этом случае задача существенно упрощается. В сети можно найти кучу онлайн-калькуляторов, которые проведут все расчёты за несколько секунд. Все что нужно – это задать нужные параметры.

С онлайн калькулятором расчёт площади существенно проще Источник doverie-mo.ru

Для удобства все измерения указываются в разных единицах измерения, исходя из конкретных нужд. С их помощью любого такого калькулятора легко рассчитать не только площадь помещений, но и земельных участков. Кроме того, полученный результат можно преобразовать в любую другую нужную единицу измерения.

Для наглядности ниже подробная инструкция расчёта площади с разными примерами:

Краткий итог

Проблем с расчётом площади нужных поверхностей возникнуть не должно, если следовать правилу – от сложного к простому. Именно в этом и кроется успех больших достижений человечества. Не нужно все усложнять, достаточно проявить волю и смекалку и тогда любая задача, какой бы она ни была, будет решена.

Прочитать позже

Отправим материал на почту

Автор статьи

Инженер-конструктор, специализация – мелкозаглубленные фундаменты

Игорь Щукин

Источник: https://m-strana.ru/articles/kak-poschitat-ploshchad/

Площади многоугольников

Сумма площадей

\[{\Large{\text{Основные факты о площади}}}\]

Можно сказать, что площадь многоугольника — это величина, обозначающая часть плоскости, которую занимает данный многоугольник. За единицу измерения площади принимают площадь квадрата со стороной \(1\) см, \(1\) мм и т.д. (единичный квадрат). Тогда площадь будет измеряться в см\(2\), мм\(2\) соответственно.

Иными словами, можно сказать, что площадь фигуры — это величина, численное значение которой показывает, сколько раз единичный квадрат умещается в данной фигуре.

Свойства площади

1. Площадь любого многоугольника — величина положительная.

2. Равные многоугольники имеют равные площади.

3. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

4. Площадь квадрата со стороной \(a\) равна \(a2\). 

\[{\Large{\text{Площадь прямоугольника и параллелограмма}}}\]

Теорема: площадь прямоугольника

Площадь прямоугольника со сторонами \(a\) и \(b\) равна \(S=ab\).

Доказательство

Достроим прямоугольник \(ABCD\) до квадрата со стороной \(a+b\), как показано на рисунке:

Данный квадрат состоит из прямоугольника \(ABCD\), еще одного равного ему прямоугольника и двух квадратов со сторонами \(a\) и \(b\). Таким образом,

\(\begin{multline*} S_{a+b}=2S_{\text{пр-к}}+S_a+S_b \Leftrightarrow(a+b)2=2S_{\text{пр-к}}+a2+b2 \Leftrightarrow\\a2+2ab+b2=2S_{\text{пр-к}}+a2+b2 \RightarrowS_{\text{пр-к}}=ab \end{multline*}\)

Определение

Высота параллелограмма — это перпендикуляр, проведенный из вершины параллелограмма к стороне (или к продолжению стороны), не содержащей эту вершину.
Например, высота \(BK\) падает на сторону \(AD\), а высота \(BH\) — на продолжение стороны \(CD\):

Теорема: площадь параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена эта высота.

Доказательство

Проведем перпендикуляры \(AB'\) и \(DC'\), как показано на рисунке. Заметим,что эти перпендикуляры равны высоте параллелограмма \(ABCD\).

Тогда \(AB'C'D\) – прямоугольник, следовательно, \(S_{AB'C'D}=AB'\cdotAD\).

Заметим, что прямоугольные треугольники \(ABB'\) и \(DCC'\) равны. Таким образом,

\(S_{ABCD}=S_{ABC'D}+S_{DCC'}=S_{ABC'D}+S_{ABB'}=S_{AB'C'D}=AB'\cdotAD.\)

\[{\Large{\text{Площадь треугольника}}}\]

Определение

Будем называть сторону, к которой в треугольнике проведена высота, основанием треугольника.

Теорема

Площадь треугольника равна половине произведения его основания на высоту, проведенную к этому основанию.

Доказательство

Пусть \(S\) – площадь треугольника \(ABC\). Примем сторону \(AB\) за основание треугольника и проведём высоту \(CH\). Докажем, что \[S = \dfrac{1}{2}AB\cdot CH.

\] Достроим треугольник \(ABC\) до параллелограмма \(ABDC\) так, как показано на рисунке:

Треугольники \(ABC\) и \(DCB\) равны по трем сторонам (\(BC\) – их общая сторона, \(AB = CD\) и \(AC = BD\) как противоположные стороны параллелограмма \(ABDC\)), поэтому их площади равны.

Следовательно, площадь \(S\) треугольника \(ABC\) равна половине площади параллелограмма \(ABDC\), то есть \(S = \dfrac{1}{2}AB\cdot CH\).

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_1B_1C_1\) имеют равные высоты, то их площади относятся как основания, к которым эти высоты проведены.

Следствие

Медиана треугольника делит его на два треугольника, равных по площади.

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_2B_2C_2\) имеют по равному углу, то их площади относятся как произведения сторон, образующих этот угол.

Доказательство

Пусть \(\angle A=\angle A_2\). Совместим эти углы так, как показано на рисунке (точка \(A\) совместилась с точкой \(A_2\)):

Проведем высоты \(BH\) и \(C_2K\).

Треугольники \(AB_2C_2\) и \(ABC_2\) имеют одинаковую высоту \(C_2K\), следовательно: \[\dfrac{S_{AB_2C_2}}{S_{ABC_2}}=\dfrac{AB_2}{AB}\] Треугольники \(ABC_2\) и \(ABC\) имеют одинаковую высоту \(BH\), следовательно: \[\dfrac{S_{ABC_2}}{S_{ABC}}=\dfrac{AC_2}{AC}\]

Перемножая последние два равенства, получим: \[\dfrac{S_{AB_2C_2}}{S_{ABC}}=\dfrac{AB_2\cdot AC_2}{AB\cdot AC} \qquad \text{ или} \qquad \dfrac{S_{A_2B_2C_2}}{S_{ABC}}=\dfrac{A_2B_2\cdotA_2C_2}{AB\cdot AC}\]

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:

Верно и обратное: если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других двух сторон, то такой треугольник прямоугольный.

Теорема

Площадь прямоугольного треугольника равна половине произведения катетов.

Теорема: формула Герона

Пусть \(p\) – полупериметр треугольника, \(a\), \(b\), \(c\) – длины его сторон, тогда его площадь равна \[S_{\triangle}=\sqrt{p(p – a)(p -b)(p – c)}\]

\[{\Large{\text{Площадь ромба и трапеции}}}\]

Замечание

Т.к. ромб является параллелограммом, то для него верна та же формула, т.е. площадь ромба равна произведению высоты и стороны, к которой проведена эта высота.

Теорема

Площадь выпуклого четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей.

Доказательство

Рассмотрим четырехугольник \(ABCD\). Обозначим \(AO=a, CO=b, BO=x,DO=y\):

Заметим, что данный четырехугольник составлен из четырех прямоугольных треугольников, следовательно, его площадь равна сумме площадей этих треугольников:

\(\begin{multline*}S_{ABCD}=\frac12ax+\frac12xb+\frac12by+\frac12ay=\frac12(ax+xb+by+ay)=\\\frac12((a+b)x+(a+b)y)=\frac12(a+b)(x+y)\end{multline*}\)

Следствие: площадь ромба

Площадь ромба равна половине произведения его диагоналей: \[S_{\text{ромб}}=\dfrac12 d_1\cdot d_2\]

Определение

Высота трапеции – это перпендикуляр, проведенный из вершины одного основания к другому основанию.

Теорема: площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту.

Доказательство

Рассмотрим трапецию \(ABCD\) с основаниями \(BC\) и \(AD\). Проведем \(CD'\parallel AB\), как показано на рисунке:

Тогда \(ABCD'\) – параллелограмм.

Проведем также \(BH'\perp AD, CH\perp AD\) (\(BH'=CH\) – высоты трапеции).

Тогда \(S_{ABCD'}=BH'\cdot AD'=BH'\cdot BC, \quad S_{CDD'}=\dfrac12CH\cdot D'D\)

Т.к. трапеция состоит из параллелограмма \(ABCD'\) и треугольника \(CDD'\), то ее площадь равна сумме площадей параллелограмма и треугольника, то есть:

\[S_{ABCD}=S_{ABCD'}+S_{CDD'}=BH'\cdot BC+\dfrac12CH\cdotD'D=\dfrac12CH\left(2BC+D'D\right)=\] \[=\dfrac12CH\left(BC+AD'+D'D\right)=\dfrac12 CH\left(BC+AD\right)\]

}}\] Можно сказать, что площадь многоугольника — это величина, обозначающая часть плоскости, которую занимает данный многоугольни”,”word_count”:709,”direction”:”ltr”,”total_pages”:1,”rendered_pages”:1}

Источник: https://shkolkovo.net/theory/56

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.